详细信息
基于改进量子粒子群的分布式并行计算框架设计
Design of Distributed Parallel Computing Framework Based on Improved Quantum Particle Swarm
文献类型:期刊文献
中文题名:基于改进量子粒子群的分布式并行计算框架设计
英文题名:Design of Distributed Parallel Computing Framework Based on Improved Quantum Particle Swarm
作者:王卫锋[1];田亮[1]
机构:[1]新乡学院计算机与信息工程学院
第一机构:新乡学院计算机与信息工程学院
年份:2014
卷号:22
期号:6
起止页码:1960-1962
中文期刊名:计算机测量与控制
外文期刊名:Computer Measurement & Control
收录:CSTPCD;;北大核心:【北大核心2011】;
语种:中文
中文关键词:量子粒子群;任务;并行计算;混沌
外文关键词:quantum particle swarm; task; parallel computing; chaos
摘要:为了实现用户任务在大规模计算机集群上进行高效地处理,并克服现有并行计算框架通用性不强的缺点,提出了一种基于改进量子群算法和Map-Reduce模型的通用并行计算框架;首先,对经典的Map-Reduce分布式并行计算框架以及并行计算流程进行了具体描述;然后,基于改进的量子粒子群算法设计了改进的Map-Reduce模型,在Map阶段通过多种群并行搜索并计算所有粒子适应度,在Shuffle和Sort阶段实现粒子的排序和种群的重新划分,然后在Reduce阶段更新控制系数和粒子位置,当最优解不变时,通过混沌扰动对其进行扰动;仿真实验表明同,文中设计的基于改进量子粒子群算法和Map-Reduce模型能高效地执行任务,较传统的MapReduce模型具有较少的执行时间,具有很强的可行性,是一种有效的通用并行计算模型。
In order to realize ellectlve management ot user tasks In the large computer group, and conquer the defects of low universality of the given parallel computing framework, a parallel computing framework is propoesd based on improved Quantum particle swarm al- gorithm and Map--Reduce model. Firstly, the classic Map--Reduce model and the parallel computing flow were described. Then the im- proved Map--Reduce model was designed based on improved Quantum particle swarm algorithm, the multi--population was parallel searched and the fitness was computed, and the particle was sorted and the particle population was divided, then the control coefficient and particle po- sition were renewed in the Reduce stage, when the global solution was unchanged, the particle was changed by chaos interrupt. The simula- tion experiment shows the method in this paper can execute task effectively, and compared with the traditional Map--Reduce model it has the less execution time. Therefore, the method in this paper has strong feasibility and universal parallel computing model.
参考文献:
正在载入数据...