详细信息
基于Foliation条件的离散动力系统二维流形计算
Growing 2D Manifold of Discrete Dynamical System Based on Foliation Condition
文献类型:期刊文献
中文题名:基于Foliation条件的离散动力系统二维流形计算
英文题名:Growing 2D Manifold of Discrete Dynamical System Based on Foliation Condition
作者:贾蒙[1]
第一作者:贾蒙
机构:[1]新乡学院机电工程学院
第一机构:新乡学院机电工程学院
年份:2014
卷号:31
期号:4
起止页码:495-504
中文期刊名:计算物理
外文期刊名:Chinese Journal of Computational Physics
收录:CSTPCD;;Scopus;北大核心:【北大核心2011】;CSCD:【CSCD2013_2014】;
基金:河南省重大科技攻关项目(112102210014)资助
语种:中文
中文关键词:离散动力系统;稳定流形;不稳定流形;导数传递;三维Hénon映射;Lorenz系统;混沌吸引子
外文关键词:discrete dynamical system; stable manifold; unstable manifold; derivative transportation; 3D Hénon map; Lorenz system; chaotic attractor
摘要:研究离散动力系统双曲不动点的二维流形计算,利用不变流形轨道上Jacobian矩阵能够传递导数这一特殊性质,提出一种新的一维流形计算方法,通过预测-校正两个步骤迅速确定流形上新网格点,避免重复计算,并简化精度控制条件.在此基础上,将基于流形面Foliation条件进行推广,推广后的Foliation条件能够控制二维流形上的一维子流形的增长速度,从而实现二维流形在各个方向上的均匀增长.此外,算法可以同时用于二维稳定和不稳定流形的计算.以超混沌三维Hénon映射和具有蝶形吸引子的Lorenz系统为例验证了算法的有效性.
An algorithm for computing 2D stable and unstable manifolds of hyperbolic fixed points of discrete dynamical systems is shown. With the fact that Jacobian transports derivative along orbit of an invariant manifold,an algorithm for computing 1D manifold is proposed. The mesh point is located with a Prediction-Correction scheme which reduces searching time and at the same time gives rise to a simplified accuracy condition. 2D manifold is computed by covering it with orbits of 1D sub-manifold. A generalized Foliation condition is used to guarantee that 2D manifold is growing equally along orbits of 1D sub-manifold in different directions. Performance of the algorithm is demonstrated with hyper chaotic 3D Hénon map and Lorenz system.
参考文献:
正在载入数据...