详细信息
文献类型:期刊文献
中文题名:The Properties of κ-quasi-*-A(n) Operator
作者:ZUO Fei[1];SHEN Jun-li[2]
第一作者:ZUO Fei
机构:[1]College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007,China;[2]Department of Mathematics, Xinxiang University, Xinxiang 453000, China
第一机构:College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007,China
年份:2012
卷号:27
期号:3
中文期刊名:数学季刊(英文版)
外文期刊名:Chinese Quarterly Journal of Mathematics
基金:the Natural Science Foundation of the Department of Education of Henan Province
语种:英文
外文关键词:κ-quasi-*-A(n) operator;quasisimilarity;single valued extension property;Weyl spectrum;essential approximate point spectrum
摘要:An operator T is called k-quasi-*-A(n) operator,if T*k|T1+n|2/1+nTk ≥T*k|T*|2Tk,k ∈ Z,which is a generalization of quasi-*-A(n) operator.In this paper we prove some properties of k-quasi-*-A(n) operator,such as,if T is a k-quasi-*-A(n) operator and N(T) (∈)N(T*),then its point spectrum and joint point spectrum are identical.Using these results,we also prove that if T is a k-quasi-*-A(n) operator and N(T) (∈) N(T*),then the spectral mapping theorem holds for the Weyl spectrum and for the essential approximate point spectrum.
参考文献:
正在载入数据...