登录    注册    忘记密码

详细信息

混沌差分进化算法在复杂优化问题中的应用研究    

Research on chaos differential evolution algorithm and its application to complex optimization problems

文献类型:期刊文献

中文题名:混沌差分进化算法在复杂优化问题中的应用研究

英文题名:Research on chaos differential evolution algorithm and its application to complex optimization problems

作者:肖文显[1];许利军[2];马孝琴[1]

第一作者:肖文显

机构:[1]河南科技学院网络中心;[2]新乡学院网络中心

第一机构:河南科技学院网络中心,河南新乡453003

年份:2014

期号:3

起止页码:32-36

中文期刊名:安徽大学学报:自然科学版

收录:CSTPCD;;北大核心:【北大核心2011】;

基金:国家自然科学基金资助项目(71171151);河南省教育厅自然科学基金资助项目(13B520011)

语种:中文

中文关键词:复杂优化问题;遗传算法;混沌映射;混沌遗传算法

外文关键词:complex optimization problems; differential evolution algorithm; chaotic map; chaosdifferential evolution algorithm

摘要:差分进化算法求解复杂优化问题时,由于进化后期种群多样性降低,算法极易陷入局部最优值无法跳出.论文针对该问题,将差分进化算法和混沌优化方法耦合,构建了混沌差分进化算法.算法利用混沌序列的遍历性和内部迭代的随机性,弥补差分进化算法容易陷入局部最优的缺陷,从而提高算法的搜索性能.对几种典型函数的测试结果表明:混沌差分进化算法的全局搜索性能有了显著提高,能有效避免算法陷入局部最优.因此,与标准差分进化算法和混沌优化算法相比,该算法在求解复杂优化问题时更加可行、有效.
When differential evolution algorithm is used in solving the complex optimization problems, diversity of species is decreased in the later evolution period, therefore the algorithm can easily fall into local optimum. A novel chaos differential evolution algorithm based on the differential evolution and chaos optimization algorithm, which made use of the ergodicity and internal randomness of chaos iterations, was presented to overcome the defect of premature local optimum and enhance the global searching capacity of differential evolution with that of powerful local searching capacity of the chaos optimization algorithm. The experimental results indicated that the chaos differential evolution algorithm could improve the global searching capacity significantly and avoid falling into local optimum. Thus, the proposed approach was more feasible and effective in solving the complex optimization problem compared with differential evolution and chaos optimization algorithm.

参考文献:

正在载入数据...

版权所有©新乡学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心