详细信息
一类具有连续接种和潜伏期的流行病模型的稳定性分析
Stability analysis of a class of epidemic models with continuous inoculation and incubation periods
文献类型:期刊文献
中文题名:一类具有连续接种和潜伏期的流行病模型的稳定性分析
英文题名:Stability analysis of a class of epidemic models with continuous inoculation and incubation periods
作者:梁桂珍[1];郝林莉[2]
第一作者:梁桂珍
机构:[1]新乡学院数学与信息科学学院;[2]郑州大学数学与统计学院
第一机构:新乡学院数学与信息科学学院
年份:2018
卷号:46
期号:5
起止页码:51-59
中文期刊名:河南科技学院学报:自然科学版
基金:国家自然科学基金(11871238);河南省科技厅科技攻关项目(132102310482);河南省高等学校重点科研项目(16A110021);新乡学院科技创新项目(12ZB17)
语种:中文
中文关键词:潜伏期;连续接种;平衡点存在性;局部渐近稳定;全局渐近稳定
外文关键词:incubation period;continuous inoculation;existence of equilibrium point;locally asymptotic stability;global asymptotic stability
摘要:研究了一类具有连续接种免疫和潜伏期的SEIVR流行病模型,通过计算下一代矩阵得到了疾病流行与否的阈值-基本再生数.并运用Routh-Hurtwiz判据,Lyapunov函数以及La Salle不变集原理证明了当R0<1时,模型存在唯一的无病平衡点P0,且P0全局渐近稳定;当R0>1时,模型存在两个平衡点,无病平衡点P0不稳定,地方病平衡点P*全局渐近稳定.进一步分析得到在疾病防控中可以通过增加疫苗接种比率θ来降低基本再生数R0,从而防止疾病蔓延,并进行数值模拟验证了理论结果的正确性.
In this paper,a SEIVR epidemic model with continuous vaccination immunity and incubation period wasstudied.By calculating the next generation matrix,the threshol -the number of basic regeneration-R0 was obtained.Using Routh-Hurtwiz criterion,Lyapunov function and LaSalle invariant set principle,it was proved that when R0〈1,the model has a unique disease -free equilibrium point and the disease -free equilibrium point is globallyasymptotically stable.When R0〉1,the model has two equilibrium points,the disease-free equilibrium point is unstable,and the local disease -free equilibrium point is globally asymptotically stable.Further analysis can get in diseasecontrol and prevention by increasing the ratio of vaccination θ to reduce the basic reproductive number,so as toprevent the spread of disease.And at the end of the article for the correctness of the numerical simulation to verifythe the oretical results.
参考文献:
正在载入数据...