详细信息
文献类型:期刊文献
中文题名:粗糙集神经网络算法在数据挖掘中的研究与应用
英文题名:Research of Rough Set Neural Network on DM System
作者:王晓洁[1];王付强[1]
第一作者:王晓洁
机构:[1]新乡师范高等专科学校计算机科学系
第一机构:新乡学院计算机与信息工程学院
年份:2007
卷号:15
期号:4
起止页码:23-25
中文期刊名:河南机电高等专科学校学报
外文期刊名:Journal of Henan Mechanical and Electrical Engineering College
语种:中文
中文关键词:粗糙集;神经网络;数据挖掘;关联规则
外文关键词:rough set ; neural network; data mining; association rules
摘要:神经网络是数据挖掘中最为常用的算法之一。它具有正确率高、抗噪声数据能力强、计算错误率低等优点。但神经网络算法也存在结构相对复杂、训练时间长、计算结果的可解释度比较低等问题。文中采用粗糙集理论对数据进行预处理,使用神经规则进行数据挖掘的新方法,该方法可以在结果精度有限降低的前提下,得到表示简单明确且错误率低的关联规则,同时可以减少网络训练时间,大大改进单独采用神经网络算法给系统带来的缺陷。
Neural network is one of the most commonly used algorithms in data mining. It has the advantages of a high accuracy, a great anti-yawp capacity, and a low error rate in calculation. However, neural network also has its disadvantage that it has a relatively complicated structure, a longer training period and a deficiency in calculation report interpretation. This paper proposed a new method in which a preprocessing of data using rough sets theory will be followed by data mining using neural rules. With a limited decrease in accuracy, this method provides us with clear, definite and low error rate associate rules, as well as a shorter network training time. The proposed method thus eliminates some of the system limitations caused by of an exclusive/sole application of neural network.
参考文献:
正在载入数据...