登录    注册    忘记密码

详细信息

基于多信息融合的移动机器人定位算法    

Localization Algorithm of Mobile Robot Based on Multi Information Fusion

文献类型:期刊文献

中文题名:基于多信息融合的移动机器人定位算法

英文题名:Localization Algorithm of Mobile Robot Based on Multi Information Fusion

作者:连黎明[1]

第一作者:连黎明

机构:[1]新乡学院机电工程学院

第一机构:新乡学院机电工程学院

年份:2019

卷号:44

期号:9

起止页码:89-95

中文期刊名:西南师范大学学报:自然科学版

收录:CSTPCD;;北大核心:【北大核心2017】;

基金:河南省科技攻关项目(172102210443)

语种:中文

中文关键词:移动机器人;多信息融合;定位;扩展卡尔曼滤波

外文关键词:mobile robot;multi information fusion;localization;extended Kalman filter

摘要:为了提高机器人的定位精度,提出了一种基于里程计、单目视觉与激光雷达信息相融合的自定位算法.首先,由里程计推算出机器人在各个时刻位置的估计值;其次,在不同时刻计算出机器人摄像头与任意两个环境特征点的夹角变化,通过激光雷达获得环境特征点的距离和角度并利用扩展卡尔曼滤波算法与里程计的定位信息进行融合;最后,由匹配的环境特征对机器人的位置进行修正,得到精确的位置估计.实验结果表明,该算法在多转角、长距离的情况下取得了满意的效果,有效地提高了定位精度.
In order to increase the localization precision of mobile robot, a self-localization algorithm based on odometry, single vision and laser radar has been proposed. First, odometry estimated robot's pose at every sampling time. Secondly, at different times, the angle changes between any two of the environmental feature points and robot camera were calculated. Laser radar obtained the information that indicating distance and angle of landmarks. Then, the data provided by odometry, single vision and laser radar were fused together by means of an extended Kalman filter (EKF) technique. Finally, the position of robot was reset by matched environment feature, and the position estimation of robot was given accurately. Experiment result proves that such an algorithm achieves good localization effect under multi-corner and long-distance conditions, and improves the localization precision efficiently.

参考文献:

正在载入数据...

版权所有©新乡学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心