详细信息
视频人脸识别中基于聚类中心LLE的特征相似性融合方法
Feature Similarities Fusion Method Based on LLE in Cluster-centric for Video Face Recognition
文献类型:期刊文献
中文题名:视频人脸识别中基于聚类中心LLE的特征相似性融合方法
英文题名:Feature Similarities Fusion Method Based on LLE in Cluster-centric for Video Face Recognition
作者:贾海龙[1]
第一作者:贾海龙
机构:[1]新乡学院现代教育技术中心
第一机构:新乡学院
年份:2014
卷号:0
期号:24
起止页码:89-95
中文期刊名:科学技术与工程
外文期刊名:Science Technology and Engineering
收录:CSTPCD;;北大核心:【北大核心2011】;
基金:河南省科学技术计划发展项目(122400450245)资助
语种:中文
中文关键词:局部线性嵌入;相似性融合;双特征;视频人脸识别;贝叶斯分类器
外文关键词:locally linear embedding ; similarity fuse ; double feature ; video face recognition ;bayes classifier
摘要:针对大部分现有视频人脸识别方法通常仅利用代表性范例或图像集而较少研究有效融合的问题,提出了一种基于聚类中心特征相似性融合方法。首先,使用局部线性嵌入从原始数据空间学习低维嵌入,并利用STHAC算法将投影划分为LLE特征空间聚类;然后,从基于局部外观的聚类中得到特征相似性,在贝叶斯最大后验概率分类框架中对范例点和聚类子空间进行相关相似性匹配;最后,借助于范例重要性概率完成人脸的识别。在视频人脸数据集CMU Mobo、Honda/UCSD和ChokePoint上的实验验证了所提方法的有效性,实验结果表明,相比几种传统的方法,所提方法取得了较高的识别精度和较低的计算复杂度。
Most of the existing methods are focused towards the use of either representative exemplars or image sets to summarize videos.However,there is little work as to how they can be combined effectively to harness their individual strengths,for which a fusing method based on cluster-centric feature similarities is proposed.Firstly,locally linear embedding is used to learn low dimension embedding from original data space,and STHAC is used to divide projects as clustering in LLE feature space.Then,feature similarities are got from local appearance-based cluster,relevant similarity matching of exemplar points and cluster subspaces are done in a Bayesian maximum-a posteriori classification framework.Finally,face recognition is finished by importance probability of exemplars.The effectiveness of proposed method has been verified by experiments on video face databases CMU Mobo,Honda/ UCSD and ChokePoint.Experimental results show that proposed method has higher recognition precision and lower computational complexity than several traditional methods.
参考文献:
正在载入数据...