详细信息
On Operators Satisfying T*?T2?T ≥ T*?T*?2T
文献类型:期刊文献
英文题名:On Operators Satisfying T*?T2?T ≥ T*?T*?2T
作者:Shen J.L.[1];Zuo F.[2];Yang C.S.[2]
第一作者:Shen J.L.
机构:[1]Department of Mathematics, Xinxiang University, Xinxiang 453000, China;[2]College of Mathematics and Information Science, He'nan Normal University, Xinxiang 453007, China
第一机构:新乡学院数学与信息科学学院
年份:2010
卷号:26
期号:11
起止页码:2109-2116
外文期刊名:Acta Mathematica Sinica, English Series
收录:Scopus(收录号:2-s2.0-77957353377)
基金:Received February 17, 2009, accepted October 27, 2009 Supported by Science Foundation of Ministry of Education of China (Grant No. 208081)
语种:英文
外文关键词:joint point spectrum; l-*-A; point spectrum; α-Browder's theorem
摘要:Let T be a bounded linear operator on a complex Hilbert space H. In this paper we introduce a new class denoted by l-*-A, of operators satisfying T*{pipe}T2{pipe}T ≥ T*{pipe}T*{pipe}2T, and we prove the basic properties of these operators. Using these results, we also prove that if T or T* ∈ l-*-A, then w(f(T)) = f(w(T)), σea(f(T)) = f(σea(T)) for every f ∈ H(σ(T)), where H(σ(T)) denotes the set of all analytic functions on an open neighborhood of σ(T). ? 2010 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg.
参考文献:
正在载入数据...