登录    注册    忘记密码

详细信息

云计算环境下入侵疑似边界问题改进算法    

Improved algorithm for intrusion suspected boundary problem in cloud computing environment

文献类型:期刊文献

中文题名:云计算环境下入侵疑似边界问题改进算法

英文题名:Improved algorithm for intrusion suspected boundary problem in cloud computing environment

作者:茹蓓[1];贺新征[2]

第一作者:茹蓓

机构:[1]新乡学院计算机与信息工程学院;[2]河南大学计算机与信息工程学院

第一机构:新乡学院计算机与信息工程学院

年份:2017

卷号:39

期号:5

起止页码:545-550

中文期刊名:沈阳工业大学学报

外文期刊名:Journal of Shenyang University of Technology

收录:CSTPCD;;Scopus;北大核心:【北大核心2014】;

基金:河南省科技厅科技攻关项目(172102210445);河南省科技厅软科学研究资助项目(152400410345);河南省教育厅资助项目(15A520093)

语种:中文

中文关键词:云计算环境;入侵检测;疑似边界;阈值计算;模糊网络;边界确定;网络安全性;入侵形式

外文关键词:cloud computing environment; intrusion detection; suspected boundary; threshold calculation; fuzzy network; boundary determination; network security; intrusion form

摘要:传统的疑似边界问题处理算法一直存在边界确定结果不准确、误差较大的问题,为了提高网络安全性能,提出一种基于模糊网络阈值计算的云计算环境下入侵检测中疑似边界确定算法,分析了云计算环境下入侵种类及其检测原理,并确定其入侵形式;通过计算模糊网络阈值,确定云计算环境下入侵检测中疑似边界具体参数.仿真实验结果表明,采用改进算法进行疑似边界的确定,其结果精度及效率均优于传统算法,具有一定的优势.
The traditional processing method for the suspected boundary problem always shows the inaccurate boundary determination results and larger errors. In order to improve the network security,a determination method for the suspected boundary in the intrusion detection in the cloud computing environment based on the fuzzy network threshold calculation was proposed. In addition, the intrusion types and detection principle in the cloud computing environment were analyzed,and the intrusion forms were determined.Through calculating the fuzzy network threshold,the specific parameters for the suspected boundary in the intrusion detection in the cloud computing environment were determined. The results of simulation experiment show that when the improved method is used for the determination of suspected boundary,the accuracy and efficiency of corresponding results are superior to those of results obtained with the traditional method,and the improved method has certain advantages.

参考文献:

正在载入数据...

版权所有©新乡学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心