详细信息
文献类型:期刊文献
中文题名:三水平U-型设计在对称化L2-偏差下的下界
英文题名:Lower Bound of Symmetric L2-discrepancy on Three-level U-Type Designs
作者:雷轶菊[1];欧祖军[2]
第一作者:雷轶菊
机构:[1]新乡学院数学与信息科学学院,新乡453003;[2]吉首大学数学与统计学院,吉首416000
第一机构:新乡学院数学与信息科学学院
年份:2018
卷号:41
期号:1
起止页码:138-144
中文期刊名:应用数学学报
外文期刊名:Acta Mathematicae Applicatae Sinica
收录:CSTPCD;;北大核心:【北大核心2017】;CSCD:【CSCD2017_2018】;
基金:国家自然科学基金(11561025,11701213);湖南省自然科学基金(2017JJ2218,2017JJ3253)资助项目
语种:中文
中文关键词:三水平;U-型设计;对称化L2-偏差;下界
外文关键词:three-level designs; U-type designs; symmetric L2-discrepancy; lower bound
摘要:均匀试验设计是部分因子设计的主要方法之,已被广泛地应用于工业生产、系统工程、制药及其他自然科学中.各种偏差被用来度量部分因子设计的均匀性.不管使用哪种偏差,关键的问题是寻找一个精确的偏差下界,因为它可以作为衡量设计均匀性的标准.本文应用条件极值的方法得到了三水平U-设计在对称化L2-偏差下的下界,该下界可作为寻找均匀设计的一个基准.
Uniform experiment design is one of main methods for fractional factorial designs, which has been widely applied in manufacturing, system engineering, pharmaceutics and natural sciences. Many kinds of discrepancies have been used in measure uniformity of fractional factorial designs. No matter using which discrepancy, the key issue is to provide a accurate discrepancy lower bound, because it may be as a criterion to measure uniformity of designs. In this paper, a lower bound of symmetric L2-discrepancy on three-level U-type designs is provided by applying for conditional extremum. It may be as a benchmark to look for uniform designs.
参考文献:
正在载入数据...