登录    注册    忘记密码

详细信息

基于多种小波熵和信号熵的植物电信号特征提取    

Feature Extraction of Plant Electrical Signals Based on Multi-wavelet Entropy and Signal Entropy

文献类型:期刊文献

中文题名:基于多种小波熵和信号熵的植物电信号特征提取

英文题名:Feature Extraction of Plant Electrical Signals Based on Multi-wavelet Entropy and Signal Entropy

作者:付会凯[1]

第一作者:付会凯

机构:[1]新乡学院机电工程学院

第一机构:新乡学院机电工程学院

年份:2013

卷号:35

期号:9

起止页码:38-40

中文期刊名:农机化研究

外文期刊名:Journal of Agricultural Mechanization Research

收录:北大核心:【北大核心2011】;

基金:河南省高等学校青年骨干教师项目(2010GGJS-220)

语种:中文

中文关键词:植物电信号;多小波熵;信号熵;特征提取

外文关键词:plant electrical signals; multi-wavelet entropy; signal entropy; feature extraction

摘要:为了有效地对植物电信号进行分类,提出了基于多种小波熵与信号熵的特征提取方法。小波熵由于结合了小波变换和信息熵理论的优势,能够快速、准确地提取植物电信号的特征;但是,由于植物电信号的非平稳性和多样性,依靠单一的小波熵可能出现分类困难和分类不准确等问题,需要结合多种小波熵和信号的熵信息进行特征提取和分类。为此,以4类干旱胁迫下的君子兰叶片信号为对象,对提取的特征向量利用KNN方法进行分类。试验结果表明,该方法能够对君子兰叶片的电信号进行有效识别,为植物电信号的识别提供了一种可行的新方法。
To solve the problem of diagnosis for plant electrical signals,a classification approach based on multi-wavelet entropy and signal entropy feature extraction is proposed.Wavelet entropy can pick up the signal characteristic quickly and exactly because it combines together the advantages of wavelet transform and Shannon entropy.But signal identification based only on single wavelet entropy may cause difficult or inaccurate results because of the non-stationary and diversified plant electrical signals.Therefore,several different wavelet entropies and signal entropies are extracted as eigenvectors.The experiment results show that this diagnosis method can recognise the electric signals of the laminae of Clivia effectively,so it is a feasible method for plant electrical signals diagnosis in quantification.

参考文献:

正在载入数据...

版权所有©新乡学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心