登录    注册    忘记密码

详细信息

The Properties of k-quasi-*-A(n) Operator    

文献类型:期刊文献

中文题名:The Properties of k-quasi-*-A(n) Operator

英文题名:The Properties of k-quasi-*-A(n) Operator

作者:zuo fei[1];SHEN Jun-li[2]

第一作者:zuo fei

机构:[1]College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007,China;[2]Department of Mathematics, Xinxiang University, Xinxiang 453000, China

第一机构:College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007,China

年份:2012

卷号:27

期号:3

起止页码:375-381

中文期刊名:数学季刊:英文版

外文期刊名:Chinese Quarterly Journal of Mathematics

收录:CSTPCD;;CSCD:【CSCD2011_2012】;

基金:Supported by the Natural Science Foundation of the Department of Education of Henan Province(12B110025, 102300410012)

语种:英文

中文关键词:k-quasi-*-A(n) operator;quasisimilarity;single valued extension property;Weyl spectrum;essential approximate point spectrum

外文关键词:k-quasi-,-A(n) operator; quasisimilarity; single valued extension property;Weyl spectrum; essential approximate point spectrum

摘要:An operator T is called k-quasi-*-A(n) operator, if T^(*k)|T^(1+n)|^(2/(1+n))T^k ≥T^(*k)|T~* |~2T^k , k ∈ Z, which is a generalization of quasi-*-A(n) operator. In this paper we prove some properties of k-quasi-*-A(n) operator, such as, if T is a k-quasi-*-A(n) operator and N(T )■N(T~* ), then its point spectrum and joint point spectrum are identical. Using these results, we also prove that if T is a k-quasi-*-A(n) operator and N(T )■N(T ), then the spectral mapping theorem holds for the Weyl spectrum and for the essential approximate point spectrum.
An operator T is called k-quasi-*-A(n) operator, if T*k|T1+n|2/(1+n)Tk ≥T*k|T* |2Tk , k ∈ Z, which is a generalization of quasi-*-A(n) operator. In this paper we prove some properties of k-quasi-*-A(n) operator, such as, if T is a k-quasi-*-A(n) operator and N(T )N(T* ), then its point spectrum and joint point spectrum are identical. Using these results, we also prove that if T is a k-quasi-*-A(n) operator and N(T )N(T ), then the spectral mapping theorem holds for the Weyl spectrum and for the essential approximate point spectrum.

参考文献:

正在载入数据...

版权所有©新乡学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心