详细信息
一类潜伏期和染病期均传染的SEIQR流行病模型的稳定性
Stability of a SEIQR Epidemic Model with Infectious Incubation Period and Infectious Period
文献类型:期刊文献
中文题名:一类潜伏期和染病期均传染的SEIQR流行病模型的稳定性
英文题名:Stability of a SEIQR Epidemic Model with Infectious Incubation Period and Infectious Period
作者:梁桂珍[1];郝林莉[1,2]
第一作者:梁桂珍
机构:[1]新乡学院数学与信息科学学院,河南新乡453003;[2]郑州大学数学与统计学院,郑州450000
第一机构:新乡学院数学与信息科学学院
年份:2020
卷号:45
期号:3
起止页码:1-9
中文期刊名:西南师范大学学报:自然科学版
收录:CSTPCD;;北大核心:【北大核心2017】;
基金:国家自然科学基金项目(11871238);河南省科技厅科技攻关项目(132102310482);河南省高等学校重点科研项目(20B110014);新乡学院科技创新项目(12ZB17).
语种:中文
中文关键词:潜伏期;隔离;基本再生数;局部渐近稳定;全局渐近稳定
外文关键词:incubation period;insulate;basic reproduction number;locally asymptotic stability;global asymptotic stability
摘要:研究了一类潜伏期和染病期均传染的SEIQR流行病模型,定义了基本再生数R 0.并运用Routh-Hurtwiz判据、Lyapunov函数及LaSalle不变集原理和第二加性复合矩阵证明了当R 0<1时,模型存在唯一的无病平衡点P0,且P0全局渐近稳定;当R0>1时,模型存在两个平衡点,无病平衡点P0不稳定,地方病平衡点P*全局渐近稳定.最后进行了数值模拟.
In this paper,a SEIQR epidemic model of a class of diseases with infectious incubation period and infectious period has been studied,the basic regeneration number R0 been defined,and the Routh-hurtwiz criterion,Lyapunov function,LaSalle invariant set principle and second additive complex matrix been used to prove that,when R0<1,the model has a unique disease-free equilibrium point P0,and P0 is globally asymptotically stable;and when R0>1,there are two equilibrium points in the model.Endemic equilibrium P*is global asymptotic stability.And at the end of the article are numerically simulated.
参考文献:
正在载入数据...