登录    注册    忘记密码

详细信息

基于遗传算法和BP神经网络的盘形成形铣刀磨损状态预测    

Research on prediction tool of wear conditions of disk milling cutter based on genetic algorithm and BP neural network

文献类型:期刊文献

中文题名:基于遗传算法和BP神经网络的盘形成形铣刀磨损状态预测

英文题名:Research on prediction tool of wear conditions of disk milling cutter based on genetic algorithm and BP neural network

作者:唐军[1];赵波[2];李文星[1]

第一作者:唐军

机构:[1]新乡学院机电工程学院;[2]河南理工大学机械与动力工程学院

第一机构:新乡学院机电工程学院

年份:2017

卷号:36

期号:5

起止页码:66-71

中文期刊名:河南理工大学学报:自然科学版

收录:CSTPCD;;北大核心:【北大核心2014】;

基金:国家"863"计划项目(2013AA040103);国家自然科学基金资助项目(51175153/E050903)

语种:中文

中文关键词:遗传算法;BP神经网络;电流监测;刀具磨损

外文关键词:genetic algorithm ; BP neural network ; monitoring current ; tool wear

摘要:为提高数控成形铣齿生产率、降低成本和避免安全隐患,需要对刀具的磨损状态进行准确预测。首先基于电流监测法搭建了数控成形铣刀的磨损电流监测系统,然后确定BP神经网络中用于刀具磨损诊断的输入特征量和目标特征量,并应用Matlab软件对样本数据进行归一化处理和神经网络训练,最后利用遗传算法对BP神经网络模型进行优化。测试结果表明,刀具磨损状态预测率达92.78%以上,具有一定的工程应用价值。
In the process of CNC shaping milling,the prediction of the state of tool wear has important applica- tion significance to improve productivity, reduce scrap rate and avoid security risks. Based on the current moni- toring method,the detection system of the wear current of CNC forming milling cutter is set up. Then the input characteristic quantity and target characteristic quantity of BP neural network for tool wear diagnosis are meas- ured, and the sample data were normalized and trained by the Matlab software. At last,the genetic algorithm is used to optimize the BP neural network. The network test results show that the prediction rate of tool wear con- dition is more than 92.78% . This has certain engineering application value.

参考文献:

正在载入数据...

版权所有©新乡学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心