登录    注册    忘记密码

详细信息

Consistency for the LS estimator in the linear EV regression model with replicate observations  ( SCI-EXPANDED收录)  

文献类型:期刊文献

英文题名:Consistency for the LS estimator in the linear EV regression model with replicate observations

作者:Xu, ShouFang[1];Li, Nan[2]

第一作者:许寿方

通讯作者:Xu, SF[1]

机构:[1]Xinxiang Univ, Dept Math & Informat Sci, Xinxiang 453000, Henan Province, Peoples R China;[2]Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan Province, Peoples R China

第一机构:新乡学院数学与信息科学学院

通讯机构:[1]corresponding author), Xinxiang Univ, Dept Math & Informat Sci, Xinxiang 453000, Henan Province, Peoples R China.|[1107121]新乡学院数学与信息科学学院;[11071]新乡学院;

年份:2013

卷号:42

期号:4

起止页码:451-458

外文期刊名:JOURNAL OF THE KOREAN STATISTICAL SOCIETY

收录:;Scopus(收录号:2-s2.0-84885872308);WOS:【SCI-EXPANDED(收录号:WOS:000326556600003)】;

基金:The authors are very grateful to the referees and the editor for their valuable reports which improved the presentation of this work. This work is supported by NSFC (No. 11001077), HASTIT (No. 2011HASTIT011), NCET (No. NCET-11-0945), Henan province foundation and frontier project (No. 112300410205), Plan for Scientific Innovation Talent of Henan Province (124100510014) and Xinxiang university science and technology innovation fund (No. 12ZC07).

语种:英文

外文关键词:Linear EV model; LS estimator; Strong and weak consistency

摘要:In this paper, we consider the following linear errors-in-variables regression model: xi(ij) = x(i) + delta(ij), eta(ij) = y(i) + epsilon(ij) = 0 + beta x(i) + epsilon(ij), with independent identically distributed errors (epsilon(ij), delta(ij)), (j = 1, 2, ... , n(i); i = 1, 2, ...). The strong and weak consistency for the LS estimators (beta) over cap and (theta) over cap of the unknown parameters beta, theta in this model are obtained, which weaken some known conditions and improve some known results. (C) 2013 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

参考文献:

正在载入数据...

版权所有©新乡学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心